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The problem considered is that of characterizing the best approximation, to a
given x in a Hilbert space, from a set which is the intersection of a closed convex
cone and a closed linear variety. This problem is shown to be equivalent to the
(generally much simpler) problem of characterizing best approximations to a cer
tain perturbation of x from the cone alone (or a subcone of the cone). Several
applications to shape-preserving interpolation are given. © 1992 Academic Press, Inc.

1. INTRODUCTION

This work represents a continuation of our previous paper [5]. As
pointed out there, constrained approximation problems arise when
an approximant to a specified problem is required to preserve certain
shapes such as positivity, monotonicity, and/or convexity. Moreover, in
various specific formulations, this problem is often posed in data analysis,
computer-aided geometric design, and mathematical modeling. Many
such problems may be formulated as the study of existence, uniqueness,
charcterization, and computational aspects of the solution to the extremal
problem

inf{ IIxll I x E en A -1(d)},

where x is in a Hilbert space X, C is a closed convex cone that defines the
constraint, A is a bounded linear operator from X into a finite-dimensional
Hilbert space Y, and d is a given "data" vector in Y.

The objective of this paper is twofold. Our primary goal is to charac
terize the minimum norm interpolant, for arbitrary admissible data, under
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the assumption that C is a closed convex cone. We had resolved this
problem in [5] in the important special case when d is in the interior of the
data cone A(C). There we showed that the minimum norm interpolant can
be characterized as a best approximation in C to a linear combination of
the finitely many vectors which define the interpolation conditions (see also
Theorem 2.3 below). In particular, this leads to an easier approximation
problem in C (rather than in C n A-I (d)) which involves only finitely
many parameters. Moreover, algorithms were developed (e.g., in [15,18])
that applied to this situation. Here we show that an analogous result holds
when d is in the boundary of the data cone except that, in this situation,
the characterization involves a certain subcone of C rather than C itself (see
Theorem 2.6 below). In particular, this minimization problem involves
only finitely many parameters, despite the fact that the constraint set
C n A -l(d) is infinite-dimensional in general. These subcones depend upon
the minimal face of the data cone which contains the data vector. If this
face is exposed, the subcone is very often readily computable. Examples are
given to illustrate many of these points.

The second objective is to extend the results of [5] and [18] in order
to characterize the minimum norm solution in case the set C described
above is an arbitrary closed convex set, not necessarily a cone. Our charac
terization can be obtained provided that the data vector is an interior point
of the data set A (C).

A review of an earlier draft of this paper pointed out a large body of
results related to our work, many of which had been motivated, at least in
part, by [17]. Indeed, the problem

inf{ Ilxll I x E C, Ax = d}

can easily be cast as a certain optimization problem whose "optimal"
solution can be studied via Fenchal duality [2, 3, 13, 16, 19].

Interpolation problems have also been considered from a control theory
perspective, providing another set of results [10]. In particular a practical
motivation for the study of such constrained problems arises in connection
with L 2 spectral estimation [12].

This paper consists of four sections. Following the Introduction, the
general characterization of the minimal norm interpolant from a flat
intersecting a convex cone is derived in Section 2 (Theorem 2.6). Some of
these results have appeared in the context of optimization theory [2, 3, 16],
where criteria for the minimal norm interpolant are given in terms of
subdifTerentials and intersections of conex [3] as well as subcones of C
[4]. Our criteria describes the minimal norm interpolant of x in terms of
the metric projection of a perturbation of x onto a subcone CF of C. In
particular this formulation seems more convenient for approximation
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theorists and, in addition, has led to some numerical algorithms seeking
the optimal solution [10, 15]. Also in Proposition 2.8, we show that the
subcone CF may be described by finitely many parameters in case the
minimal face of the data cone containing d is exposed. The notion of
exposed faces in optimization to study certain minimization problems has
already arisen [3, 16], but the usage here (Proposition 2.8 and the example
following) appears to be new.

Perhaps the main results of the paper occur in Section 3. In our opinion,
the three most important cones that arise in applications are the cones of
positive functions, increasing functions, and convex functions. For these
examples, in the case of boundary data, the subcones are shown to be
related to certain subsets of the underlying interval. While this has already
been recognized in case of the positive cone [17, 5, 2], these results are
new for the cones of increasing and convex functions. Examples are given
to illustrate the theory.

Finally, Section 4 deals with the minimization problem described above
in the case that C is an arbitrary closed convex set. The main results in this
section are Theorems 4.6 and 4.7.

2. BEST ApPROXIMATION FROM CONSTRAINED CONES

Throughout this section, X and Y will denote fixed Hilbert spaces with
Y being finite-dimensional. Let A be a bounded linear operator from X into
Y, C a closed convex cone in X, dE AC := {Ax I x EC}, and

K= CnA -I(d) = {XE C I Ax=d}.

Then K is a nonempty closed convex set in X, and consequently is a
Chebyshev set. That is, each xEXhas a unique best approximation PK(x)
in K. Our problem in this section is to obtain "useful" characterizations of
PK(x).

In [5] it was seen that "property CHIP" played an important role in
this regard. For the pair of sets {C, A ~ I(d)}, property CHIP is equivalent
to the statement that

for each y EC n A -I(d) = K, where "con" denotes the "closed conical hull
of". Clearly, C - y c C - C and C - C is a closed subspace in X. Hence, for
the purpose of verifying whether or not {C, A -I (d)} has property CHIP,
we may assume without loss of generality that X = C - C.

Since A is continuous, it follows that

AC - ACe A(C - C) c A (C - C) = AC - A C = AC - AC,
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where the last equality holds due to the fact that AC - AC is a subspace
(since A C is a cone) in a finite-dimensional space, and is therefore closed.
Thus,

A(C-C)=AC-AC=aff AC,

where aff AC denotes the affine hull of AC, which, in turn, is the linear
span of A C since A C is a convex cone.

The upshot of all this is as follows. To verify that {C, A -I(d)} has
property CHIP, we may assume that X = C - C and that R(A), the range
of A, is aff AC.

Further, by replacing Y with R(A), we may also assume that A is
surjective and thus Y=afT AC. In [5; Lemma3.1] we showed that if
dE int A C, then {C, A -I (d)} has property CHIP.. But dE int A C if and
only if dE int AC relative to afT AC; or equivalently, d eri AC, where ri AC
denotes the relative interior of AC.

The next lemma is now immediate.

LEMMA 2.1. If dE ri A C, then {C, A -I (d)} has property CHIP.

We recall the following well-known characterization of best approxima
tions from convex cones (see e.g. [5; Proposition 2.1]).

LEMMA 2.2. Let x E X and y E C. Then y = Pc(x) if and only if

x- YE(C- y)o=COnyl-.

Here SO denotes the dual cone of S. That is,

SO= {YEXj (x, y>~O for all XES}.

Now we can state the first of the two main results of this section. It
characterizes best approximations from K when d is a relative interior point
of AC.

THEOREM 2.3. If d E ri AC, then for each x E X, there exists a yo E Y such
that

A [Pdx + A*yo)] =d.

Moreover,

PK(x) = Pdx+ A*y)

for any y E Y satisfying (2.3.1).

(2.3.1 )

(2.3.2)
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Proof Let M = C - C, so that M is a closed subspace of X which
contains C and hence also K.

The proof of the case X = M is virtually identical to that of Theorem 3.2
of [5] so we omit it.

Now assume X"# M. Using the first part of the proof (applied to PM(x)
instead of x), we obtain that, for each x E X,

for any y E Y which satisfies

A[PdPM(x)+A*y)] =d.

(2.3.3 )

(2.3.4)

Next we recall the well-known facts that PM is linear, Pit = PM' and

(2.3.5)

(cf. [6]). Using these facts, we deduce that

PdPM(x) +A*y) = PC[PM(PM(X) + A*y)]

= PdPM(x) + PM(A*y)]

=PC[PM(x + A*y)] = Pdx+ A*y).

That is,

PdPM(x) + A*y) = Pdx +A*y).

Hence, from (2.3.3)-(2.3.6), we obtain

PK(x) = PK(PM(X)) = PdPM(x) + A*y) = Pdx + A*y)

for any y E Y which satisfies

(2.3.6)

A[Pdx+A*y)] =d.

This proves (2.3.1) and (2.3.2). I
Now we turn to the case when d rf. ri AC. Here we will find that there are

results analogous to Theorem 2.3 except that C must now be replaced by
a certain subcone of C.

DEFINITION 2.4. Let F denote the minimal convex extremal subset of
AC which contains d, and let
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Some of the following statements have already been observed in the
literature [3, 19].

LEMMA 2.5. The following statements hold:

(1 ) F is a convex cone.

(2) CF is an extremal convex cone in C.

(3) ACF=F.

(4) dEri ACF •

(5) K = CF n A - I (d).

(6) {CF' A-'(d)} has property CHIP.

(7) If dEri AC, then C F = C.

Proof (1) Let yEF and 0<2<1. Then (l-2)0+2(2- 'Y)=YEF
and 0, 2-Iy EAC imply 0, 2-Iy EF since F is extremal. For each p> 1, set
2 = p -I E (0, 1) and note py = 2 -Iy EF. Thus, py EF for each p ~ 1. If
o~ p ~ 1, then the convexity of F implies that

py = py + (1 - p)O E F.

Thus py EF for any p ~ 0, and hence F is a cone.

(2) CF is a convex cone since the inverse image, A -I(F), of a convex
cone is a convex cone.

To see CF is extremal in C, let x, y EC, 0 < 2 < 1, and Ax +
(l-2)YECF. Then Ax+(1-2)YEA- I(F) implies 2Ax+(1-2)AYEF
and Ax, Ay EAC which implies that Ax and Ay are in F by the extremality
of F. Thus x, YEA-I(F), so that x, YECnA-I(F)=CF; that is, C F is
extremal.

(3) Let A e :=A Ie. Then A e : C--+AC is surjective so that

ACF= AeCF= Ae[C n A -I(F)] = AcEAc'(F)] = F.

(4) By (3), it suffices to show that dEri F. Suppose dEF\ri F. We
will work in the finite-dimensional Hilbert space span F = afT F. Then

int F= ri Fi= 0.

By the Eidelheit separation theorem, there exists a Z Espan F\ {O }
(cf. [19]) such that

sup <z, y) :::;; <z, d).
yEint F
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Since F is a convex cone by (1) and int F is dense in F (cf. [19]), it follows
that

sUp<Z, Y) = 0 = <z, d).
yEF

If zEF\ then zE(spanF).l={O} which contradicts z#O. Thus
<z, Yo) <0 for some YoEF. Set

H = {y Espan F I <Y, z) = 0}.

This H is a closed hyperplane (in span F) which supports F at d. Thus
E:= H n F is a convex extremal subset of F which does not equal F (since
Yo EF\E). But this contradicts the minimality of F.

(5) Since CFc C, we have

CFn A -I(d) c C n A -I(d) = K.

Conversely, if xEK, then XEC and xEA-1(d)cA-1(F). Thus
xECnA-1(F)=CF •

(6) This follows from Lemma 2.1 (with C replaced by C F ).

(7) Suppose dE ri AC. Since dE ri ACF = ri F by (3) and (4), and
since AC and F are both convex extremal subsets of AC, it follows that
AC=F (cf. [20]). Thus

CF = C n A-1(F) = C nA- 1(AC)::::> C n C= C::::> CF

implies CF = c. I
It is perhaps worth noting that parts of Lemma 2.5 are still valid if F

is replaced by any extremal convex subset E of AC which contains d.
Denoting CE := C n A -I (E), one can verify that

(1) E is a convex cone,

(2) CE is an extremal convex cone in C,

(3) ACE=E,

(4) K = CEn A-I(d), and

(5) If dEintAC, then CE=c.

The following main result of this section, which generalizes Theorem 2.3,
is a consequence of Theorem 2.3 and Lemma 2.5.

THEOREM 2.6. For each x E X,

(2.6.1 )
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for any y E Y which satisfies

A[PCF(x+A*y)J =d. (2.6.2)

Moreover, if dE ri A C, then CF= C.

Proof Since K = CFn A -l(d) and dE ri ACF by Lemma 2.5, we apply
Theorem 2.3 (with C replaced by CF) to obtain (2.6.1) and (2.6.2). Also, if
dE ri A C, then CF = C by Lemma 2.5. I

In practice, it may be difficult or impractical to determine the minimal
face F of AC which contains d, and then the subcone CF= C n A -1(F).

One approach that greatly helps to identify CF is the case that F is an
exposed face.

DEFINITION 2.7. A face E of a convex set D is called an exposed face if
E = D n H for some closed hyperplane H.

Remarks. (i) In case the convex set D is a cone, the hyperplane H
contains the origin [20J; i.e., H = ker A for some continuous linear
functional A.

(ii) If E = D n ker A and x E D\E, then A(X) =I' O. In fact, A(X) has the
same sign for all x E D\E.

Relative to our situation, recall that F is the minimal convex extremal
subset of A C which contains d. We assume that Y = 12(n) and hence

Ax=«x,Xl ), 00" <x,xn»), XEX,

for some linearly independent set {Xl' X2' '00' x n} in X. Suppose that Fis an
exposed face of A C. Then F = A C n ker A for some linear functional A on
Y. Then we can identify A with an element (AI' A2, 00" An)EI2(n). Set

PROPOSITION 2.8. If F is an exposed face of A C, then CF= CA'

Proof X E CF if and only if X E C and Ax E F if and only if x E C
and «X,XI),oo., <x,xn»)EF if and only if XEC and <X, 2:7 AiX;) =
2:7 A<X, Xi) =0 if andonly if XE CA' I

As an application we prove, for the case p = 2, Theorem 2.1 of [17 J
which was stated but not proved there. (The authors of [17 J omitted the
proof since certain details were quite technical). That is, we discuss the
spline problem which, after standard recasting, corresponds to

min{lIxIIIXEL2[0, IJ,x~O, and (XMi=di, i=l,oo.,n-k},
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where M i = M i,k is the kth order B-spline supported on [t i' ti+k], and
O~tl<···<tn~1.

Let Q = {i I di > O} so that QC = {i I di = 0 }.

CLAIM 1. d is an interior point relative to ACn {(Xl' ..., Xn-k) I Xi=O
ijiEQC}.

Proof Note that for some go~O a.e., d= (n goMl , ..., g goMn - k ). Let
PN= {XE [0,1] I go(x)~ liN} and jEQ. Then for sufficiently large N,
there exist points {t i I iEQ, tiEPN} so that

Mj(tJ>O, jEQ.

By the Schoenberg-Whitney theorem (cf. [1]), the matrix [Mi(tj )] is
invertible; i.e., {Mj I j E Q} is a linearly independent set over {tj I j E Q} so
that {Mj I j E Q} is linearly independent over PN for sufficiently large N.

So for sufficiently small G> 0 and any vector d with Ildll < G, there exist
scalars {a;} that satisfy

gl :=go+( L aiMi) XPN interpolates d+dwith gl~O a.e.
JEO

Next, let R = {(Xl' ..., Xn- k) IXi~O, xi=O if iEQC} and let

F=RnAC.

CLAIM 2. F is the minimal face of AC containing d.

Proof We establish this by showing that any face E containing d also
contains F. Let y be any element of F. For sufficiently small A., we have

I A.
1 _ A. d - 1 _ A. Y E ball(d, G) c AC,

so that

d= A.y+ (1- A.) [_1_ d __A._ yJ
I-A. I-A.

with yEAC and Ij(l-A.)d-A.I(I-A.)YEAC. Since E is a face containing
d, we have y E E. Since y is arbitrary in F, it follows that FeE and so F
is minimal.

We next establish that F is exposed. Let A.(x):= <x, u) where
U= (u., ..., un - k ) with

U.={l
I 0

if i E QC

if iEQ
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and H = ker A. Since, under the current hypotheses, dE A C implies d j ~ 0,
it follows that H (\ C = R (\ C = F. By Theorem 2.6 and Proposition 2.8, the
solution has the form

where CA={XECI <x,'L7-kUjMj)=0}. Since x and I,ujMj are non
negative, x must be zero on U~::~ {(tj, tj+k) I dj=O}.

An example illustrating certain boundary data relative to the cone of
increasing functions will be given in the next section.

As another approach that allows one to avoid the computation of CF

directly, it is often possible to seek subcones Cn of C and bounded linear
operators B: X -+ Y such that K = Cn (\ B- 1(d'), where d' E int BCn . The
next theorem governs this situation.

THEOREM 2.9. Let Cn be a closed convex subcone of C, B a bounded
linear operator from X into a finite-dimensional Hilbert space Z, and d' E Z
be such that K = Cn (\ B-1(d') and d' E ri BCn . Then for any x E X, there
exists a Zo E Z for which

(2.9.1 )

In addition,

(2.9.2)

for any Z E Z satisfying (2.9.1).

Proof This result follows directly from Theorem 2.3 by replacing A, Y,
C, and d with B, Z, Cn, and d', respectively. I

3. BEST CONSTRAINED ApPROXIMATION FROM THE POSITIVE,

INCREASING, AND CONVEX CONES

In this section we give three applications of the results in Section 2. The
first application concerns the case when X = L 2(f,l), C is the cone of positive
functions in X, and A is a bounded linear operator from X into 12(n). The
second application corresponds to the case X = L 2( a, b), C is the cone of
increasing functions in X, and A is a bounded linear operator from X into
12(n). The third case deals with the cone of convex functions. The first
application was originally proved (for a special case) in [17] using
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variational methods, and also in [5] using an approach based on property
CHIP. Our reason for including it here is to show how it can be deduced
from Theorem 2.9. The second and third applications of Theorem 2.9 seem
to be new. Throughout this section, various properties will be associated
with equivalence classes of functions. This will mean that some
representative within a given equivalence class possesses that property. For
example, x E L 2(/l) and x ~ 0 means there is some function X o where
xo(t)~O for every t and xo(t)=x(t) a.e. (/l).

Example (The Cone of Positive Functions)

We first deal with the cone of positive functions. Let (T, [1', /l) be a
measure space, L 2(/l):= L 2 ( T, [1', /l), and we assume that /l is chosen so
that L 2(/l) is a separable Banach space. Furthermore, let

X i EL2(/l), diE IR (i= 1, 2, ..., n), and

K= {XE C I <x, Xi> =di (i= 1, 2, ..., n)}.

Assume K=I=0. It is no loss of generality to 'assume that {X 1,X2 , ...,xn } is
linearly independent. Defining A on L 2(/l) by

we see that A is a bounded linear operator from L 2(/l) onto 12(n) and

Moreover, A*: 12(n) --. X is given by

n

A*Y=Ly(i)xi ,

1

Y = (y(l), y(2), ..., y(n)).

Let K be a countable dense subset of K and let Q k and Q be the subsets
of T defined by

Q k := {t E T I k( t) > 0 }

Q:= U Qk'
kEK

That is, Q is the (countable) union of the supports of the elements in K and
hence is measurable. It is easily established that for any k E K, Q k = Q n Q k

a.e. (/l).
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For any measurable subset S of T, we define

Cs:={YEC!y=Oon T\S}.

Note that C=CTand K=CQflA-I(d).

LEMMA 3.1. The following statements hold:

(1) Cs is a closed convex subcone of C.

(2) C~= {YEL 2(jl) Iy~O on S}.

(3) For each xEL2(jl), Pcs(x)=x+Xs, where x+ = max {x, O}. In
particular, Pdx) = x + .

Proof Statements (1) and (2) are obvious. To verify (3), we fix any
x EL 2(jl) and y E Cs' Then, by Lemma 2.2, y = Pcs(x) if and only if x - y E
C~flY..L. Equivalently, x-y~O on S and IT (x- y)ydjl=O. Since y~O
and y = 0 off S, this statement is equivalent to x ~ y on Sand y(t) = 0
whenever t ESand x(t) < y(t). That is, y = X+Xs' In particular, taking
S = T, we obtain Cs = C and the result follows. I

THEOREM 3.2. For any x E L 2(jl), there exist scalars (X I' ... , (Xn such that

In addition,

(j= 1, 2, ..., n). (3.2.1 )

(3.2.2)

for any choice of scalars Pi chosen to satisfy (3.2.1). Moreover, if the set
{XI' x 2 , ... , x n } is linearly independent over il, then the factor Xu may be
deleted from (3.2.1) and (3.2.2).

The proof is similar to that of Theorem 3.4 below which we prove in
detail. Theorem 3.2 was first proved by Micchelli et al. [17] (in the special
case when x = 0) using variational methods. The result as stated here, using
a similar approach, was established in [5]. It was also shown in [17] that
the characteristic function Xu cannot be deleted, in general, from (3.2.1)
and (3.2.2).

Example (The Cone of Increasing Functions)

We next deal with the case where the cone consists of increasing
functions. Let 1= (a, b) and let L 2(I) denote the space of square-integrable
Lebesgue measurable functions on I,

C = {x EL 2(I) I x is increasing on I},
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X; E L 2(l), d; E IR (i = 1,2, ...,n), and K = {xECI <X, x;) = d;
(i = 1, 2, ..., n)}. Increasing functions are real-valued on I, but may be
unbounded. Assume K -# 0. It is no loss of generality to assume that
{Xl> x 2 , •••, x n } is linearly independent. Defining A on L 2(l) by

Ax=«x,x1 ), <X,X2),'·" <x,xn »),

we see that A is a bounded linear map from L 2(l) onto 12(n) and

K=CnA-1(d).

Moreover, A *: 12(n) ~ L 2(l) is given by

n

A*Y=Ly(i)x;,
1

Y= (y(1), ..., y(n)).

For any y E C, let J1.y denote the Lebesgue-Stieltjes measure induced on
the Borel sets in I by y. By modifying y on a set of Lebesgue measure zero,
we may assume that y is continuous from the right on 1. Thus

for any Borel set Eel. The support of any Borel measure J1. on I is the
(relatively) closed set

supp J1.:= I\UJ"'

where

UJ" := U {U I U open, J1.( U) = 0 },

That is, supp J1. is the smallest (relatively) closed set in I such that J1.
vanishes on its complement.

For any measurable subset ScI, define

Cs := {YE C I J1.iI\S) = O}.

In particular, C= C/. For any xEL2(I), define the "indefinite integral" of
X by

X[I](t) :=rx(s) ds,
a

t E [a, b].

Note that x[1] is continuous on [a, b] and x[1](a)=O. A function YEL2(I)
is said to be constant on a subset S of I provided that y is continuous at
each point of Sand y(td = y(t2 ) for all points t I' 12 in S.

The following lemma is from [8].

640/71/2-8
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LEMMA 3.3. (1) Cs is a closed convex subcone of C

(2) C~= {YEL 2(I) I y[l](b)=O, y[l](t)~O on S}

(3) If x E L 2(I) and y E C s , then y = Pdx) if and only if the following
conditions hold:

(i) y[l](b) = x[l](b),

(ii) y[l](t)::::;x[l](t)for all tES, and

(iii) if y[l](s) <X[l](S) for some SES, then y is constant in the
"component" of S (i.e., the largest open interval) which contains s.

(4) If xEL2(I) and YEC, then y=Pdx) if and only if y[l] is the
greatest convex minorant of x[1]. (That is, y[l] is the pointwise supremum of
all convex functions which are below x[l].)

Next we define a subset Q of I as follows: set

Q= U{supp Il y I YEK}.

Then Q is closed, hence measurable, Ca = {y E C I lly(I\Q) = O}, and
K={YECal <y,xi>=di, i=1,2, ...,n}.

For each i, let xt denote the functional on X whose representer is Xi'
That is,

xt(x):=<x,xi ), XEX.

Now we can state the main characterization theorem governing this
application.

THEOREM 3.4. For each x E L 2(I), there exist scalars lXI, 0, ... , IX n• O such
that

In addition,

(j= 1, 2, ..., n). (3.4.1)

(3.4.2)

for any set of scalars IX i chosen to satisfy (3.4.1). Moreover, if
{xt, xt, ..., x:} is linearly independent over Ca, then Ca may be replaced by
C in (3.4.1) and (3.4.2).

LEMMA 3.5. C~nK.L=C~.
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Proof Let zEC~nK-l. Then by Lemma 3.3, z[I](b)=O, and
Z[I](t);;::O for all tED. For any bounded yECo , an integration by parts
[11, p. 154] yields

<z, y) =rzy=y(b~)Z[I](b)- y(a+)z[I](a)-rz[I] dfJ,y
a a

Now suppose y E Co is unbounded. Let

if y(t»n

if ly(t)1 ~ n

if y(t) < -no

Then YnECo, Yn is bounded, IYnl ~ lyl for all n, and Yn(t)--. y(t) for all t.
Moreover, using standard arguments, we deduce that

(3.4.3 )

for each nonnegative fJ,y-measurable function f Hence the above argument
yields

for each n. (3.4.4 )

Since z[1] is continuous and nonnegative on D, we obtain from (3.4.3) that

Also, the dominated convergence theorem implies that

lim<z, Yn) = <z, y).
n

Combining (3.4.4)-(3.4.6), we get

<z, y) = -fa z[1] dfJ,y

for each y E Co.

(3.4.5)

(3.4.6)

(3.4.7)
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Then for each y E K, it follows that (since Z E K.L )

0= <z, y) = - f z[1] dfly·
g

Since z[1] ~ 0 on Q, it follows that Z[I] =0 a.e. (fly) on Q for each y E K.
Thus Z[I] = 0 on U {supp fly lyE K}. Since z[1] is continuous, z[1] = 0 on
Q. Using (3.4.7), we obtain that <z,y)=O for each yECg . That is,
ZEC~.

We have shown that C~ n K.L c C ~. For the reverse inclusion, note
that C~cC~ and since Cg::::JK, C~cK.L. Thus C~cC~nK.L. This
completes the proof. I

Proof of Theorem 3.4. If x;*(y) = 0 for all y E Cg and all i, then

K= {YE Cn I <y, x;) =0 (i= 1, 2, ..., n)}

=Cg .

Claim. PCa(x) = PCa(x +:L7 IX;X;) for every set of scalars lXI' ... , 1Xn-

For let y=PCa(x). Then (by Lemma2.2) x-YEC~ny.L. For any
scalars lXI' ... , IXn' we see that

n

L IX;X;E y.L n C~ c C~ny.L
I

so x +:L7 lXiX; - y E C~ n y.L also since C~ n y.L is a convex cone. Hence
(again by Lemma 2.2) y = PCa(x + :L7 IX iXJ This proves the claim.

The claim shows that the theorem holds when x;*(y)=O for all yECg
and all i= 1, 2, ..., n.

Thus we can assume x;*(y)#O for some i and some yECg . By
reindexing, we may let {xt, ..., x~}, 1~m~n, be a maximal subset
of {xt, ..., x,n which is linearly independent over Cg. Then for any
i = m + 1, ..., n, there are scalars AI, ..., Am so that

m

x;*(y)= L Ajxt(y)
j~1

In particular, for y E K,

for all y E Cg.

m

d;= <Y,x;)=x;*(y)= L Ajxt(y)
j~1

m m

= L Aj<y, xj ) = L Ajdj .
j~1 j~1
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It follows that

K = {y e CQ I (y, x j ) = dj (j = I, 2, , n) }

= {ye Cn I (y, XI) =dl (j= I, 2, , m)}

= C!J!l B '(d'),

where B: L 2(/)-+/2(m) is defined by

Bx:= (x, Xl)' (X, x 2), ..., (x, x m»)
and

d' = (d., d2 , ••• , dm) e 12(m).

Claim. C~!lKl !l~(B*)= {O}.

By Lemma 3.4. it suffices to show that

Cii!l~(B*)={O}.

229

(3.4.8 )

Suppose z e C ~!l BI(B*). Then z = L':' f1;x; and (z. y) = 0 for all
yeCQ • Thus, for all yeCQ ,

'" m ('")L p;xi*(Y)=L P;(y,x;)= y, L PiX;
I I I

= (y, z) =0.

Since {xi, ...• x~} is linearly independent over C!}, PI = ... = Pm = o. That
is, z = O. This proves the claim.

By [5], d' E int BCQ and the result follows by applying Theorem 2.9.
Finally. if {xi, ... , x,':'} is linearly independent over CQ • the proof of the

last claim shows that C~!lK.l!lYl(A*)={O}.Since CQcC, it follows
that C~::::J CO and hence C°!l K.l !l ~(A *) = {O}. By [5], dE int AC and
the result follows by Theorem 2.6. I

An Example of Theorem 3.4

As an example of the above theory, let 0 = t I < ... < tn = I be n
arbitrarily space points on [0, 1] and let M i = Mi. k' i = 1•..., n - k, be the
corresponding normalized B-splines. If C corresponds to the cone of
increasing functions, then any possible data sequence d is clearly increasing.
Moreover. if di = d; + 1 for some i, then x (the increasing function which
interpolates d) must be constant on supp M i U supp M; + I = [t i' t i + k +- I]

and such data vectors d must also be boundary data.
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In light of this, consider the minimization problem

min {IIYII lyE L 2 [0, 1], Y is increasing, and ( yM; = d;, i = 1, ..., n - k},

where d;< d;+ 1 if i= 1, ..., n -k - 2, and dn- k - 1 = dn- k •

We also assume that the problem is feasible and that there is a C 1

interpolate Yo to d which satisfies meas{suppyon [t;, t;+k]}>O for
i = 1, ..., n - k - 2. The C 1 condition insures that the integration by parts
formula applies to nYoM;. Under these assumptions, one can show that
dis an interior point to ACn{cERn-klcn_k_l=Cn_d. More specifi
cally, one can show, using arguments similar to those following
Theorem 2.6, that the set {M l' ..., M n _ k _ 2} is linearly independent over

0N:= {XE [0,1] : Yo(x) ~ liN}

for some N. Hence if M flJ(X) := J~ M;(t) dt, the set {M flJ, ..., M ~l]k -2} is
also linearly independent over ON' So for sufficiently small e;, one finds
a p,

for which g pMflJ = -e;, i= 1, ..., n -k-2.
Also, since ONe [0, tn - k - 2 ], p=O on [t n - k - 1 ,1]. Hence if

p[1J(x) := g p(t) dt, we have

for all i. So for an appropriate constant c, Yo + p[1J + C is an increasing
function which interpolates any point in a sufficiently small neighborhood
about d. As before it follows that

is a minimal face containing d as a relative interior point. Also if
2(d) = <u, d), where

i=n-k-l

i=n-k

elsewhere,
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then for any dEAC, ..1.(d)=O if and only if dn k-l=dn - k since d is an
increasing vector. Thus, by Theorem 2.6, we find that the minimal norm
solution is given by PdL7- k u,M,) where

C.l = {y I y increasing, <y. M" _k _ 1 - M" _ k >= 0 }

= {y I y increasing, y constant on [t" k I' I]}.

Example (The Cone of Convex Functions)

We now turn our attention to the cone of convex functions. Let
1= (a, b).

c = {x E L 2(1) I x is convex on I},

x, E L 2(1), d i E IR (i = 1,2..... n), and

K = {x Eel <x, x, ) = d, (i = 1, 2•.... n) ).

Assume K *" 0. It is no loss of generality to assume that {x 1. X 2' ... , x"} is
linearly independent. Defining A on L 2(1) by

we see that A is a bounded linear operator from L 2(1) onto 12(n) and

where d= (d j , d 2 , •••, d").
For any y E C, the derivative y' exists, is continuous, and is increasing

except on a countable set. By defining y' on this countable set by taking
right-hand limits, we may assume that y' is defined on all I. Just as in a
previous example, let fly' denote the Lebesgue-Stieltjes measure induced by
y', and let supp fly' denote the support of fly.

Given any measurable subset S of I, define

Cs = {YE C I /ly.(l\S)=O}.

In particular, C = Cr' The first and second indefinite integrals of any
x E L 2(/) are defined on 1 by

-I

x[ll(t) = J x(s) ds,
a

The following lemma is from [9].

X[2 1(t)=rx[ll(s)ds.
a
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LEMMA 3.6. (1) Cs is a closed convex subcone of C.

(2) C~= {xEL2(I) I x[1](b)=X[2](b)=O, X[2]~O on S}

(3) Let x E L 2(I) and y E Cs ' Then y = p cs(x) !f and only if
(i) y[I](b) = x[I](b), y[2](b) =x[2](b),

(ii) y[2](s) ~ x[2](s) for all s E S, and

(iii) if y[2](S) > X[2](S) for some s E S, then y is linear in the compo
nent of S which contains s.

Next, as before, let K be a countable dense subset of K and let Q c I be
given by

Q= U{supp J.1 y ' I YEK}.

Then Q is measurable,

CQ = {y E C I J.1 y ,(I\Q) = O},

and

K= {YE CQ I <yj, Xj> =dj (i= 1, 2, ..., n)}.

The theorem characterizing best approximations from K can be stated as
follows:

THEOREM 3.7. For each x E L 2(I), there exist scalars (XI, 0' ..., (Xn. 0 such
that

In addition,

(j= 1, 2, ..., n). (3.7.1 )

(3.7.2)

for any set of scalars (Xj chosen to satisfy (3.7.1). Moreover, if
{xt, x~, ..., x,n is linearly independent over Ca, then Ca may be replaced by
C in (3.7.1) and (3.7.2).

The proof is similar to Theorem 3.4 and is omitted. In fact, there are
analogues of Theorems 3.4 and 3.7 for the convex cone of N-convex
functions, N = 1, 2, ..., which were inspired by these examples (see [9]).
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4. BEST INTERPOLATION FROM A CONVEX SET
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The main results in this section are Theorems 4.6 and 4.7 which extend
to arbitrary closed convex sets certain results obtained in [5] for
convex cones. These theorems also constitute a generalization of [18,
Theorem 2.2]. Our results are then applied to an example which was
derived in [15] using different methods. In this section X and Y will denote
Hilbert spaces, C any closed convex set in X, A a bounded linear operator
from X into Y, dEY, and

K= CnA -1(d)= {xEXI XE C, Ax=d}.

THEOREM 4.1. Suppose {C, A-I (d)} has property CHIP. Then for any
x E X and koE K, the following statements are equivalent.

(1) kO=PK(x);
(2) x - koE 7(C=----;k-o"'"")O,---+-R=--(A-,-*:-'7), where R(A *) denotes the range of the

adjoint of A.

The same proof as given in [5, Theorem 2.1] works here. There it was
assumed that C is a closed convex cone. In that case, we also get that
(C-ko)o=Conk~.

LEMMA 4.2. Consider the following statements:

(1) d is a "Slater point": dEA(int C) (equivalently, (int C)n
A- 1(d)#0)

(2) dEint AC;

(3) {C, A-I(d)} has property CHIP.

Then (2):::;.(3). In addition, if A is surjective, then (1):::;.(2).

The proof of this lemma is exactly the same as in [5, Lemma 3.1] where
C was assumed to be a closed convex cone.

DEFINITION 4.3. Let D be a closed convex cone and M a closed
subspace in a Hilbert space. The inclination between D and M is defined py

i(D, M) :=inf{llx- ylll xED, yEM, Ilxll = Ilyll = 1}.

The cosine of the angle between D and M is defined by

c(D, M):= sup{1 (x, Y)II xED, y EM, yE M, Ilxll = lIyll = I}.
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LEMMA 4.4. Let D be a closed convex cone and M a closed subspace in
a Hilbert space X. Then the following statements hold:

(1) 0 ~ i(D, M) ~ 2.

(2) 0 ~ c(D, M) ~ 1.

(3) i(D, M) > 0 if and only if c(D, M) < 1.

(4) If i(D, M) > 0 (or c(D, M) < 1), then D n M = {O} and D + M is
closed.

(5) If both D and M are closed subspaces, then D n M = {O} and
D + M is closed if and only if i(D, M) > 0 if and only if c(D, M) < 1.

Proof (1) and (2) are obvious.

(3) For all x, Y in X with Ilxll = Ilyll = 1, we have

Ilx- Y11 2 = Ilxf-2(x, y) + Ilyf=2[1- (x, y)J. (4.4.1 )

From (4.4.1) we deduce that i(D, M) = 0 if and only if c(D, M) = 1. Equiva
lently, i(D, M) > 0 if and only if c(D, M) < 1.

(4) Let c=c(D, M)< 1. Then DnM= {O} and

I(x, y)1 ~c Ilxllllyll

for all xED, Y E M. Let Zn E D + M and Zn --+ z. We must show that
ZED + M. Now Zn = Xn+ Yn for some XnED, Yn E M. Since {zn} converges,
it must be bounded, so that for some p > 0,

p ~ II znl1 2 = Ilxnf + 2(xn, Yn) + IIYnl1 2

~ IlxnI1 2 -21(xn, Yn)1 + IIYnl1 2

~ Ilxnl1 2 -2c IlxnllllYnl1 + IIYnl1 2

= (1lxnll - II Ynll)2 +2(1- c) Ilxnll II Ynll·

Since c< 1, it follows that both sequences {llxnll-IIYnll} and {llxnIIIIYnll}
are bounded. From this we deduce that {llxnII} and {II Ynll} are bounded.
By passing to a subsequence if necessary, we may assume that X n --+ x
weakly and Yn --+ Y weakly. Since D and M are weakly closed, we have
XED and Y E M. Thus Zn = Xn+ Yn --+ X+ Y weakly. But Zn --+ Z, so that
z=x+YED+M.

(5) Assume that both D and M are closed subspaces. Using (3) and
(4), it suffices to verify that if D n M = {O} and D + M is closed, then
c(D, M) < 1 (we may assume D + M = X). If the result were false, then
c(D, M)= 1 and there exist xnED, YnEM with Ilxnll = IIYnl1 = 1 such that
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(4.5.1)

<Xn' Yn) -+ 1. By (4.4.1), II x n- Ynil -+ O. Hence if Q denotes the projection
of D + M onto M along D, then

- Yn = Q(xn- Yn) -+ Q(O) = 0,

which contradicts IIYnll = 1. I
Remark. The proof of Lemma 4.4 is modeled after the analogous one in

[7, Lemma 2.5] where both D and M were subspaces.

LEMMA 4.5. Let dEAC.

(1 ) If dE int A C, then

(C-k)OnR(A*)= {O}

for each kECnA- 1(d).

(2) If A is surjective and dE int A C, then (4.5.1) holds and
(C-k)o+R(A*) is closedfor each kECnA- 1(d).

(3) If A is surjective and int AC~ 0, then dEint AC if and only if
(4.5.1) holds for all kECnA- 1(d).

(4) If Y is finite-dimensional and (4.5.1) holds, then (C - k)O + R(A *)
is closed for all k E C n A -l(d),

Proof (1) If dEint AC, then d cannot be separated from AC by a
closed hyperplane. Thus for each k E C n A -l(d), we have {y E Y I <Y, Ac)
~ <Y, d) for all CE C} = {O}, which is equivalent to {y I<Y, A(c - k) ~ 0
for all CE C} = {O}, or {y I <A*y, c-k) ~O for all CE C} = {O}; that is,
{y I A*YE (C-k)O} = {O}. Hence, it follows that {A*y I A*YE (C-k)O} =
{O}, or equivalently, (C-k)OnR(A*)= {O}. This proves (4.5.1).

(2) Assume that A is surjective, dEint AC, and kECnA- 1(d). By
part (1), (4.5.1) holds. Since R(A) = Y is closed, R(A *) is also closed. If
the result were false, then by Lemma 4.4(4) (with M=R(A*) and
D=(C-k)O), there are sequences {xn} in (C-k)O and {zn} in R(A*) so
that IIxnll = Ilznll = 1 and Ilxn-znll-+O. Since R(A*) is closed, the Open
Mapping Theorem implies that there is a constant R > 0 and a sequence
{Yn} in Y so that Zn = A *Yn and IIYnl1 ~ R Ilznll = R. Moreover,

1 1
p:= IIA*II = IIA*II Ilznll ~ IIYnll·

That is, O<p~ IIYnl1 ~R for all n. For each CEC, since xnE(C-k)O, we
have

<A*Yn, c-k) = <zn, c-k)

= <zn-xn' c-k) + <Xn, c-k)

~llzn-xnllllc-kll.
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<Yn, A(c - k) >= <A*Yn, C - k>,,;; r' Ilzn - Ynll

for each c E C with c - k E (C - k) n B(O, r' ), where r' > °is chosen so that
B(O, b) c A [(C - k) n B(O, r')J for some b > 0. The existence of band r ' is
guaranteed by the Baire Category Theorem [5, Lemma 3.1]. It follows that
<Yn' Y' > ,,;; r' Ilzn - xnll for all Y' EB(O, r' ). This, in turn, implies that

0< b'p";; b' IIYnl1 = sup{ <Yn' y' >I y' EB(O, b' )}";; r' Ilzn - xnll --+ 0,

which is absurd.

(3) Assume that A is surjective, int AC# 0, and (4.5.1) holds. By
(1), it suffices to verify that dEint AC. Now A* is injective (as a
consequence of the well-known relations: %(A*) = %(A*).LL = R(A)-l =
Y -l = {O} ). Hence Y =°if and only if A *y = 0. Thus the implications in the
proof of (1) are reversible and we obtain that (4.5.1) holds. That is, d
cannot be separated from AC by a closed hyperplane. Since int AC # 0,
this latter condition is equivalent to dE int A C.

(4) Assume that Y is finite-dimensional and (4.5.1) holds. Since
(C - k)O is a closed convex cone and R(A *) is a finite-dimensional sub
space, it follows from the "Dieudonne Separation Theorem" [14, p. 105J
that (C-k)o+R(A*) is closed. I

We are now ready to state the two main results of this section.

THEOREM 4.6. Let {C, A-I (d)} have property CHIP and suppose that
for each k E K, (C - k)O + R(A *) is closed. Then for every x E X,

for every Y E Y chosen so that

A[Pdx+A*y)J =d.

(4.6.1 )

(4.6.2)

Proof Let x E X and k oEK. By Theorem 4.1, k o= PK( x) if and
only if X-koE(C-ko)o+R(A*)=(C_ko)o+R(A*) if and only if
x + A*y - k oE(C - ko)O for some Y E Y if and only if k o = Pdx + A*y) for
some yE Y (see [5, Theorem 2.1J). This verifies (4.6.1). The last statement
follows by observing that (4.6.2) guarantees that the element ko=
Pdx+ A*y) is in K. I

THEOREM 4.7. Let dE int A C. If A is either a surjection or Y is finite
dimensional, then for any x E X,

(4.7.1 )
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for any y E Y chosen so that

A[Pdx + A*y)] = d.

237

(4.7.2)

Proof By Lemma 4.2, {C, A -l(d)} has property CHIP. By Lemma 4.5,
(C-k)o+R(A*) is closed for each kEK. The result now follows from
Theorem 4.6. I

Using variational methods, Micchelli and Utreras [18] proved a more
restricted version of Theorem 4.7 under the more stringent conditions that
d is a "Slater point" (i.e., int C n A -l(d) #- 0), A is surjective, and x = O.
(To verify that these conditions are more stringent, see Lemma 4.2). As an
application of the above results we recall a result of [15] which had
applications to shape preservation of data interpolation.

THEOREM [15]. Let I?: 0 and assume that there is an admissible y* such
that {¢II> ... , ¢IN} is linearly independent over the support of (y* -I). Then
the unique solution Yo to

is characterized by

where the coefficients IXI> ... , IX N are determined by the requirement that Yo
satisfy the interpolation conditions.

Note that if 1#-0, the constrained set is convex but not a convex cone
(it is a translate of a cone). Moreover the constrained set has no interior
point and hence, no Slater point condition holds, and the results of [18]
do not apply.

Relative to our setting, it is easy to see that the linear independence
condition above implies that the data point d is an interior point of the
data cone. Additionally, Yo is just PdE7 IXj¢lj), which follows from [15,
Lemma 3.1] or which can be verified directly. Hence the above theorem
may be viewed as a consequence of Theorem 4.7.
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